The generator matrix 1 0 0 1 1 1 X+2 1 1 X 1 2 1 2 1 2 X 1 X+2 1 X X 1 0 1 1 1 1 1 1 X+2 1 X+2 0 X 1 0 1 1 X+2 X+2 X 1 1 1 1 1 1 X 1 2 1 1 1 0 0 0 1 X+2 0 1 1 2 1 0 1 0 0 1 X+3 1 X+2 X+3 1 3 1 X X 2 1 1 X 1 1 2 1 3 2 1 X+3 X X+1 X X+1 2 2 1 1 1 2 1 0 3 1 1 1 3 2 3 1 X X+3 X 0 X+2 2 0 0 X+2 1 1 X 1 0 0 X+3 2 2 0 0 1 1 X+1 0 X+3 1 X+3 X+2 X 3 X 1 0 2 3 X+1 X+1 X+2 1 2 X+3 1 1 X X+1 3 0 2 1 X+3 X+2 3 X 1 1 2 0 2 X+1 X+2 0 3 X 2 3 2 1 3 1 X 2 X+1 1 X 3 X+1 3 1 X+2 X X X 0 0 0 X X X+2 0 X+2 X+2 0 X+2 2 2 0 X+2 X+2 X 0 X+2 2 X+2 X+2 0 X 0 X+2 X+2 X+2 X 2 0 0 X 2 0 X+2 X X+2 X+2 0 X+2 X 2 0 2 0 2 X X 2 2 X X+2 X+2 0 X 0 X+2 X+2 X+2 2 X+2 X+2 2 0 0 0 0 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 0 2 2 0 0 2 2 2 2 2 2 2 2 2 2 0 2 2 0 2 2 2 2 2 2 0 0 0 0 2 0 2 0 0 2 0 0 2 2 0 0 0 0 0 2 0 2 2 2 0 2 2 2 2 2 2 0 0 0 2 0 2 2 2 2 0 0 0 2 0 2 2 2 0 2 0 2 2 0 2 2 0 0 2 0 0 0 0 0 0 0 2 0 2 2 2 2 2 2 2 0 2 2 0 0 0 0 0 0 2 2 2 2 2 0 2 2 2 2 0 0 2 2 2 0 2 0 0 2 0 2 2 2 0 0 0 0 0 2 2 0 2 2 2 2 2 2 2 0 0 0 2 2 2 0 0 2 2 0 0 0 2 2 0 0 0 0 generates a code of length 64 over Z4[X]/(X^2+2,2X) who´s minimum homogenous weight is 55. Homogenous weight enumerator: w(x)=1x^0+86x^55+193x^56+578x^57+516x^58+1014x^59+793x^60+1658x^61+994x^62+1788x^63+1178x^64+1928x^65+1069x^66+1578x^67+770x^68+952x^69+368x^70+460x^71+171x^72+118x^73+46x^74+56x^75+21x^76+14x^77+14x^78+10x^79+9x^80+1x^82 The gray image is a code over GF(2) with n=256, k=14 and d=110. This code was found by Heurico 1.16 in 12.3 seconds.